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Abstract We offer an overview of the popular one-
dimensional (1-D) hindered rotor model that is often used
for quantum mechanical treatment of internal rotation. This
model is put in context with other methods used for trea-
ting anharmonic motions. The 1-D hindered rotor scheme is
general for tops of any symmetry and has been used to pro-
vide accurate treatment of hindered rotors in a wide range
of systems. One obstacle preventing wider use of the model
is its lack of incorporation into common electronic structure
codes. We have developed an algorithm for consistently trea-
ting all tops in a molecule, and we present simple codes which
interface with electronic structure codes to provide thermo-
chemical properties (S, Cp , H) of individual species and reac-
tions that have been corrected for internal rotations. Finally,
we use this approach to give sensible advice about how the
model can be used best. We show that dramatic changes in the
reduced moment of inertia do not necessarily cause compa-
rable changes in the properties of individual hindered rotors.
We demonstrate that the rotational hindrance potential can
be accurately determined using relatively coarse step sizes.
Finally, we show that internal rotation in transition states can
be treated using a “frozen transition state” approximation at
a significant computational savings. We also discuss the rela-
tionship between calculated properties of hindered rotors and
the choice of method and basis set used.
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1 Introduction

Quantum chemistry is rapidly becoming the de facto choice
for calculating estimates of thermochemical properties of
radicals and molecular species as well as kinetic parame-
ters of chemical reactions for a wide range of systems. The
impressive success of density functional theory (DFT) and
other ab initio methods in predicting desired properties with
sufficient accuracy, the large amount of inexpensive compu-
ting power presently available, and the wide availability of
user-friendly software such as GAMESS [1] and Gaussian
[2] continue to increase the number of practitioners of quan-
tum chemistry. The ever-increasing number of examples of
the success of quantum chemistry in addressing problems of
practical interest has even motivated research groups who
were traditionally experimental to add electronic structure
calculations to their arsenal. High-level ab initio studies of
real systems are now beginning to offer not only qualitative
insights but also quantitative predictions of thermodynamic
and kinetic properties.

Although quantitative predictions are available using com-
mercial quantum chemistry software packages, continuous
improvement in their accuracy is sought, and often this
involves additional calculations and analyses that are beyond
those available in a standard menu of choices within the
codes. One example of this is the treatment of internal rota-
tions. It has been understood for over 60 years that errors
are introduced by applying the harmonic oscillator (HO)
approximation to low frequency vibrational modes [3], yet
no general procedure is in common use that offers improved
treatment of anharmonic molecular vibrations [4]. Treatment
of anharmonicity is an area of active research as eviden-
ced by the multitude of approaches presented in the litera-
ture to address this problem [4–35]. The method of Ayala
and Schlegel [12] has been incorporated into the Gaussian
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software packages but offers approximate corrections for
hindered rotors that may not provide sufficient accuracy.
Truhlar [6] and later McClurg et al. [36] offered a simple
prescription for calculating the partition function between
the high and low-temperature limits, i.e., the hindered rotor
regime. However, these methods are specific to tops whose
rotational hindrance potential can be fit to a single cosine
function, and many tops in species of practical interest do
not fall into this category. At present, accurate treatment
of internal rotation still requires substantial manual effort,
which can be tedious and time-consuming when large spe-
cies or studies which include a large number of reactions are
of interest. A common approach for the treatment of hinde-
red rotors is to assume uncoupled rotation. This is due to
the fact that the exact Hamiltonian is very complicated, and
it is impossible to decouple any degrees of freedom exactly
except for translational motion. However, accurate thermo-
chemistry and (in many cases) kinetics can be calculated by
making the rigid-rotor harmonic oscillator approximation.
Accordingly, a common approximation in treating vibratio-
nal anharmonicity due to internal rotation is to treat internal
rotors with an effective one-dimensional Hamiltonian. While
it has been clearly shown that using this assumption may
sacrifice accuracy in cases of complicated or highly coupled
rotations [26,30], the computational demands introduced by
multidimensional treatment of large systems still dictate that
the assumption of uncoupled rotations will continue to be
invoked in the foreseeable future. In addition, very accurate
treatment of rotation–vibration in small, i.e., four atom,
systems can be obtained at the expense of second deriva-
tive calculations as a function of the internal rotation coor-
dinate [37–41]. However, we omit any detailed discussion
and comparison of these methods for practical reasons due
to difficulties in their application to larger molecules.

This overview is motivated by our own journey in putting
treatment of internal rotations into practice. We discove-
red that there are no freely distributed codes available that
provide research-grade treatment of individual hindered rota-
tions and subsequently incorporate these results into the cal-
culation of properties of entire species or reactions. For
example, calculating the properties of pentane requires treat-
ment of the four internal rotations in the molecule. Presently,
each internal rotation must be treated separately and its res-
pective contribution to the partition function or thermodyna-
mic properties must be manually counted. Performing all of
these steps manually for more than a few internal rotations is
very cumbersome and not practical. It is therefore desirable
to have a single program that can extract data from existing
electronic structure software, perform the internal rotation
correction and apply this correction to all individual rotors,
and output complete properties, e.g., partition functions and
thermodynamic quantities, for entire species or reactions. In
addition, to the best of our knowledge, no source exists which

describes all of the steps involved in this multistep process in
detail; rather the elements must be pulled from a wide array
of literature sources.1 This overview seeks to remedy this by
focusing on the following:

1. Review the elements of one-dimensional (1-D) treatment
of internal rotations applicable for low to moderate tem-
peratures.

2. Describe how these steps have been formulated into soft-
ware that is freely available and can be applied to an entire
species or chemical reaction.

3. Place the 1-D hindered rotor treatment in context with
other approaches for treating anharmonicity and briefly
summarize emerging methods for treatment of internal
rotations that offer a higher degree of accuracy for more
complex rotors.

4. Present several sample calculations that help to explore
the impact of various decisions that must be made in the
treatment of internal rotation, namely, (1) the correct pro-
cedure for treating internal rotation in transition states,
(2) what is the relationship between calculated hindered
rotor properties and the choice of method/basis set for
determining the hindrance potential, (3) correctly esta-
blishing a functional form of the hindrance potential, (4)
quantifying the ramifications of assuming that the redu-
ced moment of inertia for rotating tops is invariant while
undergoing rotation.

2 Treatment of internal rotation using quantum
mechanics

Pitzer and Gwinn’s [3] seminal work on the general treat-
ment of internal rotation as well as the subsequent works by
Pitzer [42] and Kilpatrick and Pitzer [43] are the foundation
for many present treatments of internal rotation. Additionally,
this literature illustrates the challenges associated with
accurate treatment of internal rotation. The essential change
from Pitzer and Gwinn’s original approach in the last 60 years
is the extension to systems in which the quantum mechanical
energy levels of 1-D rotations cannot be solved analytically.
A common approach presently adopted by many researchers
[23,26,27,34,44–47] is to use electronic structure software
to calculate minimum energy or transition-state structures,
calculate the Hessian and resulting harmonic vibrational fre-
quencies, and finally calculate the partition function and desi-
red thermodynamic properties within the HO approximation.
Typically, this entire process is completed within computatio-
nal chemistry software or associated post-processing codes,
e.g., the “freqchk” utility of Gaussian 03 [2]. Each internal

1 The reader is referred specifically to references [33,17], and [9] and
references therein for further reading.

123



Theor Chem Account (2007) 118:881–898 883

rotation is treated, and the HO partition functions and
thermodynamic properties are then corrected to (1) remove
the contribution of low-frequency vibrations that are hinde-
red/free rotors and (2) include the associated contribution of
each internal rotation. We review the procedure for treating
hindered rotors within the 1-D approximation.

2.1 The 1-D hindered rotor model

One of the most successful methods for treating internal
rotation is the 1-D hindered rotor (1-DHR) model [16,26,48].
In this model, each single bond between polyvalent atoms is
treated as an axis of rotation between two counter-rotating
tops. The potential energy surface for the rotation is deter-
mined by starting at a minimum energy or transition-state
structure and then progressively rotating the top over 360◦.
It is important to note that the assumption of separability
implies that all internal coordinates except for the dihedral
bond undergoing rotation remain fixed while obtaining the
potential energy surface. Experience has shown [47,49] that
this results in barriers to rotation that are much too high. Most
researchers now obtain the 1-D potential energy surface by
holding the dihedral angle for the rotation fixed and then cal-
culating the minimum energy structure using a constrained
optimization routine. This process itself indicates that inter-
nal rotation is coupled to other motions, and this approxi-
mation should be remembered. Additionally, the barriers for
internal rotation, i.e., the difference in adjacent maxima and
minima in the 1-D PES, can be further improved by per-
forming a rigorous saddle point optimization at each peak
obtained during the constrained geometry optimization. The
increase in computational cost can be non-trivial due to the
second derivative calculations that must be performed; as a
result most researchers approximate the barrier for internal
rotation as the value obtained by constrained geometry opti-
mization alone. Finally, it is also possible to augment the
potential energy surface by including zero-point corrections
as a function of theta so that V (θ) = εe(θ) + ZPE(θ). Rigo-
rous calculation of the ZPE of hindered rotors was recently
discussed by Ellingson et al. [33]. Regardless of the method
in which it was obtained, the energy profile is fit to a trigo-
nometric function and the reduced moment of inertia for the
rotating top is calculated from the geometry of the stationary
point. Once the potential is obtained, the energy levels for the
rotation are obtained by solving a 1-D Schrödinger equation,

− h2

8π2 Ired

d2

dθ2 � + V (θ)� = E�, (1)

where Ired is the reduced moment of inertia for the rotating
top and V (θ) is the rotational hindrance potential. The energy
levels from this calculation are used to calculate the partition
function by direct counting for each internal rotation as a

function of temperature,

qir = 1

σri

∑

j

g j exp
(
− ε j

kT

)
, (2)

where σri is the internal symmetry number of the rotating top
and g j is the degeneracy of the j th energy level, ε j . Once the
partition function for each internal rotation is known, ther-
modynamic properties, i.e., E, S, and C p, are easily obtained
using standard formulae [50]. A classical treatment for 1-D
hindered rotors that is applicable at higher temperatures was
given by Pitzer and Gwinn [3]. However, the classical treat-
ment still requires that the hindrance potential, V (θ), be cal-
culated. Given that the hindrance potential must be calculated
for both the classical and quantum mechanical treatment and
that the classical 1-D treatment is not applicable at low tem-
peratures, we restrict all subsequent discussion to quantum
mechanical treatment of internal rotation.

The computational bottleneck in treating internal rotation
comes from performing n constrained geometry optimiza-
tions to establish the hindrance potential, where n is the
number of steps required to traverse the entire rotation. For
a species with m hindered, or internal rotations, there are
n × m constrained optimizations which must be performed
to treat the entire species. Obtaining the energy levels for the
rotation from Eq. 1 is performed at a fraction of the compu-
tational cost compared to actually determining the hindrance
potential. An important consideration in defining the four
atoms that constitute the dihedral angle is that the poten-
tial, V (θ), can be different depending on which atoms are
chosen. Sterically hindered or bulky groups will have more
or less interaction depending on whether they are constrained
to be in a specific plane as the groups undergo rotation. To
try to quantify the impact of this, we examined the backbone
rotations in butane and 1,2-dichloroethane. For each species
there are nine different ways to define the dihedral plane.
Using increments of 30◦, we developed nine separate hin-
drance potentials for each species and compared their relative
barrier heights. For these two species, very small differences
between the barrier heights (<0.1 kcal/mol) were observed.
However, it is important to be aware of this issue. The vali-
dity of a given rotational potential can easily be checked by
defining the dihedral plane with the larger atoms/groups as
well as smaller ones and comparing the two curves obtained.
Additionally, this problem could be remedied by performing
a saddle point optimization at each peak in the 1-D potential
in order to better approximate the true barrier height.

To assist in developing a general algorithmic approach to
perform the 1-DHR treatment as has been implemented in
our software [51,52],2 the entire process for a given species

2 Information about obtaining these scripts can be found at
http:\\www.broadbelt.chem-eng.northwestern.edu.
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Fig. 1 Flowsheet showing overall process of the 1-DHR treatment.
The process begins with a minimum energy or saddle point (e.g., a tran-
sition state) structure, and the outputs are the partition functions and
thermodynamic properties of each internal rotation for a given species.
E denotes a step carried out with standard electronic structure software;
M designates a step that requires manual intervention; A signifies that
the 1-DHR treatment is automated as implemented in our software

is summarized in the flowchart shown in Fig. 1. The flowsheet
shows how information flows beginning with the minimum
energy or saddle point (e.g., transition state) structure and
terminates with the output of the partition function and res-
pective thermodynamic properties. Steps which are typically
completed by researchers using standard electronic structure
codes are denoted with an E; steps requiring manual input
from the user are denoted with an M; the 1-DHR treatment is
labeled with an A reflecting the fact that this step is completed
automatically once the user has completed the manual steps.
Specifically, the two atoms constituting the axis of rotation
for each top, the set of atoms which belong to each rota-
ting top, and the symmetry number for each rotation must
be identified as prescribed in the central box on the left hand
side of Fig. 1, and the hindrance potential must be inspec-
ted to ensure that no other conformations of lower energy
exist. The return path denoted in Fig. 1 allows for the case
when initial attempts via conventional geometry optimiza-
tion and even sampling configurational space by the tradi-
tional method of starting with different initial geometries did

not identify the lowest energy conformation. Although
performing constrained, 1-D rotations about all of the rota-
ting tops in a species is certainly not a guaranteed method
for obtaining the global minimum energy structure, this
approach does sample a large part of conformational space
and offers another route to the discovery of other minimum
energy structures which may be lower in energy than the star-
ting point. For example, we have recently observed [49] that
following the minimum energy path for some intramolecular
hydrogen transfer reactions leads to a reactant which is not
at the global minimum in electronic energy, i.e., the lowest
energy reaction path appears to proceed through an unexpec-
ted conformation. A consequence of performing the 1-DHR
correction is that low-energy conformers may be naturally
detected.

The process represented by the flowsheet in Fig. 1 could
be, in principle, embedded directly within the electronic
structure code or simply used as a post-processing com-
ponent for obtaining the desired thermochemical or kinetic
properties. For clarity, we have expanded the box denoted
“1-DHR” in Fig. 1 into the sub-flowsheet given in Fig. 2.
The sub-flowsheet for the 1-DHR treatment clearly shows
how information flows through the 1-DHR treatment and
shows both the calculations which are required as well as the
interdependence (or lack thereof) of these calculations. For
each internal rotation in a given species, the sub-flowsheet
“1-DHR” is traversed one time. Each component of the
“1-DHR” block is briefly expanded upon below.

2.1.1 Reliable fits for hindrance potentials of any form

Pitzer and Gwinn [3] treated symmetric tops whose rotational
potentials could be fit to the simple form, V (1 − cos nθ)/2,
where V is the barrier height for rotation and n is the number
of minima per rotation, i.e., the rotational symmetry num-
ber for that top. In reality, only the most simple rotating tops
can be described with a single trigonometric function. Howe-
ver, a Fourier series expansion with multiple terms easily fits
top rotations of almost any form. The procedure for taking
discrete data from a constrained geometry optimization and
obtaining a set of coefficients for a Fourier series is very
straightforward and briefly described here for reference.

Fig. 2 Flowsheet showing the
calculations which are required
specifically to calculate the
energy levels and
thermodynamic properties of
each individual internal rotation.
For each internal rotation in a
given species, the process shown
here is repeated
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The n-term Fourier expansion can be represented in the
following form:

V (θ j ) =
n∑

k=1

[ak(1 − cos kθ j ) + bk sin kθ j ]. (3)

The coefficients ak and bk can be obtained by using the dis-
crete data points (V (θ j )) obtained from electronic structure
calculations and performing a least-squares regression of the
overdetermined system:

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 − cos θ1 sin θ1 . . . 1 − cos nθ1 sin nθ1

1 − cos θ2 sin θ2 . . . 1 − cos nθ2 sin nθ2

1 − cos θ3 sin θ3 . . . 1 − cos nθ3 sin nθ3

. . .

1 − cos θm−2 sin θm−2 . . . 1 − cos nθm−2 sin nθm−2

1 − cos θm−1 sin θm−1 . . . 1 − cos nθm−1 sin nθm−1

1 − cos θm sin θm . . . 1 − cos nθm sin nθm

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

×

⎡

⎢⎢⎢⎢⎣

a1

b1

...

an

bn

⎤

⎥⎥⎥⎥⎦
=

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

ε1

ε2

ε3

. . .

εm−2

εm−1

εm

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (4)

The dimensions of the three matices, denoted as A, x and E
from left to right, are m×2n, 2n×1 and m×1, where n is the
number of coefficient pairs and m is the number of energy
points in the potential energy scan. The number of coefficient
pairs must be lower than the number of energy points if the
least squares method is used to solve for the coefficients. In
systems in which a large number of points are used, i.e. the
step size in scanning the rotation is small, we found that ten
terms in the Fourier series (five sine and five cosine terms)
fit the calculated data extremely well for all cases that we
tested. For test cases in which ten or fewer data points were
used to establish the hindrance potential, we typically chose
2n = m − 2. The coefficient matrix x can be solved as:

x = (AT A)−1 AT E . (5)

It is important to note that as n approaches m over-fitting can
occur and the functional form obtained from this procedure
will give nonsensical values. This can be easily checked by
using Eq. 3 and plotting the potential over the entire range,
0–2π . If too many coefficients have been used, the curve will
agree with the discrete points V (θ j )but not follow the general
shape of the potential at intermediate points. Another way to

test the quality of the fit is to make sure that the following
two conditions are met at θ = 0:

dV

dθ

∣∣∣∣
θ

= 0, i.e.,
∑
k=0

k ∗ bk = 0, (6)

d2V

dθ2

∣∣∣∣
θ

> 0, i.e.,
∑
k=0

k ∗ ak > 0. (7)

This is based on V (0) being located at a global minimum.
One question which has not been addressed in the lite-

rature is the sensitivity of the hindered rotor partition func-
tion (and associated thermodynamic quantities) to the step
size used in obtaining the hindrance potential, V (θ j ), for
each rotation. Many researchers have adopted a standard step
size of 30◦ while traversing the rotation of 360◦ [44,49,53],
whereas others use increments as small as 10◦ [47,54] or
even 5◦ [34] for obtaining the hindrance potential. The rela-
tionship between the step size of the hindrance potential and
the resulting partition function/thermodynamic properties is
further discussed in Sect. 5. Additionally, we build on the
results of East and Radom [9] by calculating the hindrance
potential using several DFT and MO methods in conjunction
with three different basis sets. The impact of the choice of
method on the calculated properties is discussed in Sect. 5.

2.1.2 Calculation of the reduced moment of inertia

The next block in Fig. 2 shows the calculation of the reduced
moment of inertia. In the limit of a molecule with only one
rotation axis, there is an exact reduced moment of inertia that
correctly couples both counter-rotation of the two rotating
portions, or tops, as well as the internal/external molecular
rotation [3,9,42]. In general, the two sides of the molecule
are not equally balanced and calculation of an appropriate
effective moment of inertia requires consideration of the cou-
pling of internal rotation with total molecular rotation as well
as the coupling of the counter-rotation of the two parts of
a molecule separated by a rotation axis. There are many
different approximations used in determining the reduced
moment of inertia that is used in Eq. 1. Ellingson et al. [33]
have recently provided a thorough discussion of many alter-
nate approaches to calculating effective moments of inertia.
Additionally, East and Radom [9] provided a convenient for-
malism for distinguishing between these moments of inertia.
A popular approximation for the coupling of internal rotation
and total molecular rotation was given by Herschbach et al.
[55] and discussed further by East and Radom [9]. In the nota-
tion of East and Radom, this approximation is I (2, n) where
n refers to the degree of coupling between the two counter-
rotating tops. The user-specified input is comprised of the
structure of the species, the axis of rotation, and the identity
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of all the atoms on each side of the molecule (separated by the
two atoms defining the twisting bond under consideration).

1

I 2,n
= 1

I 2,n
L

+ 1

I 2,n
R

, (8)

where the designations L and R in Eq. 8 refer to the fact that
the molecule has been separated into two halves (designated
“left” and “right”, arbitrarily) by the rotation axis for each
internal rotation. Each quantity I is the moment of inertia for
each side of the species about the axis of internal rotation,
which is expressed as:

I 2,n
L or R =

∑

i

mi d
2
i , (9)

where di is the distance from the i th atom in the top to the
rotation axis. Equation 9 is a summation only over the atoms
in one of the counter-rotating groups, i.e., the “top” and is cal-
culated for the “left” and “right” sides of the molecule. This
process is repeated for each internal rotation in a given spe-
cies in order to calculate all of the effective reduced moments
of inertia.

An important consideration is the designation of the axis
of internal rotation (the n classification in the notation of East
and Radom). If n = 1 the axis of rotation is the single bond
undergoing rotation. Coupling the counter-rotation of the two
sides of the molecule is accomplished through the approxi-
mations n = 2 (the axis of rotation is parallel to the bond but
passes through the center of mass of the smaller of the two
rotating tops) and n = 3 (the axis of rotation is defined as
the line connecting the centers of mass for the two rotating
groups). Since each of the successive approximations brings
the axis of rotation closer to the heavier atoms in the mole-
cule, we should expect that the reduced moment of inertia will
decrease in magnitude, i.e., I 2,1 > I 2,2 > I 2,3. This mode of
approximation to the reduced moment of inertia is attractive
for species with more than one internal rotation because exact
treatment in species with many rotors is extremely compli-
cated. The I 2,3 approximation has been recommended for
use elsewhere [47,56]. We investigated the ramifications of
using the different I 2,n in Sect. 5.

In addition, there is also a small Coriolis contribution to
all effective moments of inertia. This is typically neglected
(as has been done in this work), but may become important
in cases where the rotating groups are not rigid or the sepa-
rability approximation breaks down [29,32,57]. Equation 1
implies that Ired is not a function of θ and therefore is constant
throughout rotation. However, this is not the case for tops that
are not rigid while rotating [3,47]. The reduced moment of
inertia for a given top can, in principle, be calculated as a
function of the rotation angle. It is therefore interesting to
probe what effect the assumption that Ired is constant has

on the calculated properties, which would be expected to be
more dramatic as larger molecules are treated. We explore
the impact of this assumption quantitatively in Sect. 5.

2.1.3 Obtaining the energy levels of the hindered rotor

Following the scheme in Fig. 2, the hindrance potential (as a
Fourier series) and reduced moment of inertia are then used in
solving Eq. 1 to obtain the resulting energy levels. One com-
mon approach to solve Eq. 1 is to use a grid-based method
wherein the Hamiltonian is discretized over the rotation.
The eigenvalues and eigenvectors of the resulting diago-
nal matrix directly give the energy levels and wavefunctions
for the rotation. A number of different grid methods have
been employed for studying 1-DHR problems [16,58–61].
We have implemented the Fourier grid Hamiltonian (FGH)
method of Marston and Balint-Kurti [59–61] that is general
for potentials of any form, is easily implemented numeri-
cally and has relatively fast convergence. It is therefore an
ideal method for solving the 1-D Schrödinger equation when
implementing the 1-DHR treatment in a generalized way
such as that described here. The convergence of numerical
methods for solving Eq. 1 is dependent on the magnitude of
the reduced moment of inertia, the shape and size of the rota-
tional potential, and the temperature (for considering conver-
gence of properties like qir and Sir). We tested a wide range of
these parameters and found that in all cases 1,000 grid points
were sufficient to converge the energy levels and properties
such that increasing the number of grid points changed their
values by much less than 1%.

2.1.4 Calculating the properties of each internal rotation

The final block in Fig. 2 is calculation of the partition
function and thermodynamic properties of each internal rota-
tion. Once the energy levels for the hindered rotor are known,
this step becomes trivial and is completed using standard
formulae [50]. One caveat in this step is that for high tem-
peratures or very small barriers, i.e., kT >> V , there are
so many populated energy levels that a very large basis set
must be used. Therefore, in this limit the hindered rotor can
be approximated as a free rotor with no loss of accuracy
[12,17]. For example, when reporting thermodynamic pro-
perties of hydrocarbons the heat capacity is typically repor-
ted up to 1,500 K. At this temperature RT is 3 kcal/mol and
so for much lower barrier heights or much greater tempera-
tures, a free-rotor description is more appropriate. The free-
rotor/hindered-rotor transition has been discussed in detail
elsewhere [6,12,36]. While the partition function for hinde-
red rotors is calculated using Eq. 2, the free rotor partition
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function can be estimated using the symmetry number, σri ,
and reduced moment of inertia for the rotation, Ired [12]:

qfr =
√

8π3kT Ired

σ 2
ri

h2 . (10)

Equation 10 is also based on the approximation that the redu-
ced moment of inertia is constant throughout the angle of
rotation. The associated thermodynamic properties for hin-
dered rotors calculated in the final block of Fig. 2 are:

Shr = k ln q + 1

T

∑
j g j ε j exp

(− ε j
kT

)
∑

j g j exp
(− ε j

kT

) , (11)

Ehr =
∑

j g j ε j exp
(− ε j

kT

)
∑

j g j exp
(− ε j

kT

) , (12)

Cvhr =

(∑
j g j exp

(− ε j
kT

) ∗ ∑
j g j

ε2
j

kT 2 exp
(− ε j

kT

)) −
(∑

j g j
ε j

kT 2 exp
(− ε j

kT

) ∗ ∑
j g j ε j exp

(− ε j
kT

))

(∑
j g j exp

(− ε j
kT

))2 , (13)

whereas the thermodynamic properties of free rotors are:

Sfr = k

(
ln qfr + 1

2

)
, (14)

Efr = kT

2
, (15)

Cvfr = k

2
. (16)

Within the framework described here we can easily select
a point for the FR/HR transition and use the appropriate
formulae accordingly.

2.1.5 Correcting the harmonic oscillator partition function

As stated previously, the common approach in correcting for
internal rotation involves first calculating the corresponding
partition function and thermodynamic properties within the
HO approximation, i.e., using all of the vibrational frequen-
cies, and subsequently removing the contributions (partition
functions and thermodynamic properties) of low-frequency
vibrations that correspond to internal rotations. One way to
carry this out is simply to select the n lowest vibrational fre-
quencies where n is the number of internal rotations treated.
This often is an acceptable approach for species which are
minimum energy structures. However, in some cases, e.g.,
transition states, some of the lowest energy vibrations do
not correspond to internal rotations. In this case, an internal
modes analysis3 can be used to identify the contribution of

3 For example, the keyword “freq=intmodes” can be used in Gaussian
03 [2] to perform the internal modes analysis.

various internal coordinates (bending, stretching, torsion) to
each harmonic frequency. The internal modes analysis is per-
formed at negligible incremental computational cost once the
Hessian is calculated. Therefore, this more rigorous approach
is recommended to identify the harmonic frequencies most
closely corresponding to each internal rotation. The inter-
nal modes analysis also reveals that there can be substantial
mixing between various modes when the HO frequencies are
calculated. Van Cauter et al. [30] have addressed this in the
context of calculated kinetic data for radical addition in poly-
ethylene propagation reactions. They have offered a method
for calculating the frequency which corresponds to pure inter-
nal rotation, thus improving the 1-DHR correction. Even
when there is mixing of the vibrational modes, it is generally
possible to choose a single harmonic frequency that corres-
ponds to each individual internal rotation. If, based on the

internal modes analysis, there are two possible harmonic
frequencies that correspond to a single internal rotation, we
choose the lower vibrational frequency since these are
generally associated with hindered rotors. Implicitly included
in the process of calculating the HR corrected partition
function is a consideration of the ZPE for each internal
rotation. Since the energy levels for the 1-D hindered rotor
partition function are not referenced to 0, the HR–ZPE is
directly included in the partition function (given that the HR
energy levels were calculated after setting V (0) equal to the
lowest energy). Barone [25] gave a nice discussion of how
anharmonic motions affect the ZPE and Ellingson et al. [33]
discuss various approximations to ZPE for separable and
nonseparable cases.

3 Alternatives and extensions of 1-D uncoupled rotation

3.1 Alternate model schemes

Treating anharmonicity and, in particular, internal rotation
continues to be an area of active research, and there are a
number of possible approaches put forth in the literature.
Although the present work is a detailed overview of one popu-
lar approach, the 1-D hindered rotor model, we sought to put
this model in context by giving a brief overview of several
other methods. One important class of methods seeks impro-
ved accuracy by explicitly coupling internal and external
rotation within a single rotational partition function [7,8,10].
These methods provide extremely accurate prediction of the
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entropy and heat capacity and also give analytical expressions
for the overall rotational partition function. This makes
calculation of the density of states straightforward, and use of
these methods dovetails well with RRKM theory (in which
the density of states is explicitly required). In spite of the
accuracy of these methods, their broad application is hinde-
red by the complex algebra and extensive numerical inte-
gration required to calculate the partition functions [13].
Knyazev [13] quantified the impact of decoupling internal
and external rotation, and Knyazev and Tsang [14] presented
a straightforward algorithm for calculating partition
functions and densities of states for 1-D nonharmonic degrees
of freedom. Extensions of these methods are several
approaches that employ Monte Carlo techniques for evalua-
ting complex integrals found in more complex varieties of
the partition functions [11,20,21,24,62,63]. These methods
are all presented in the context of anharmonic motion within
a well-behaved, e.g., sinusoidal, potential. The 1-D hindered
rotor model and related methods, while limited in other areas,
are formulated to be general for potentials of any shape. Addi-
tionally, the vibrational self-consistent field (VSCF) method
can provide very accurate calculations of rotational–
vibrational energies [37–41,64–66]. Treatment of torsional
modes in transition states can also be treated via direct eva-
luation of a quantum-corrected classical phase space-based
partition function [67,68].

3.2 Extension of the 1-DHR scheme to multiple rotors and
other anharmonic degrees of freedom

The limitations of the 1-DHR model are well understood
and have been discussed in detail elsewhere [26,29,47,56].
A major assumption which can lead to compromised accu-
racy of the 1-DHR model is that the potentials of the rotating
tops within a single species are uncoupled with respect to
the other internal rotations/vibrations. Van Speybroeck et al.
[26] recently studied the thermochemistry of pentane and
hexane and showed that cancellation of errors resulted in
excellent agreement between the 1-DHR model and a fully
coupled treatment for internal rotation. The effect of coupled
internal rotations on calculated kinetic data has also been
studied [9,18,29]. In essence, the approach to studying cou-
pled internal rotations is similar to the 1-D approach. A two-
dimensional (2-D) PES is generated for two rotations that are
assumed a priori to be coupled, and a simple 2-D Hamiltonian
similar in form to Eq. 1 is solved. The computational expense
in this case increases dramatically since the PES which must
be traversed in calculating the hindrance potentials becomes
multi-dimensional. For example, studying two uncoupled
1-D internal rotations for 12 discrete angles requires only
24 constrained geometry optimizations, whereas calculating
a 2-D PES for the same two rotations with the same degree

of angular resolution for each rotation angle requires 144
constrained geometry optimizations. In addition, calculation
of the energy levels for the subsequent coupled internal rota-
tion is more complex. Thus, the application of coupled
models to problems of engineering interest is currently
limited.

In principle, other anharmonic motions such as puckering
and inversion can be treated in an analogous manner to that
outlined in Figs. 1 and 2. A corresponding 1-D anharmonic
potential is determined for the motion under consideration
along with an appropriate reduced moment of inertia, and
Eq. 1 is solved analytically or numerically depending on the
nature of the potential obtained. Katzer and Sax [28,4] gave
an overall review of how many other anharmonic motions
can be treated within the “1-D uncoupled motion” paradigm,
and Vansteenkiste et al. [69] show application of this model
to ring puckering in small cyclic compounds.

Finally, several methods have been offered to treat inter-
nal rotation that depart from the scheme described here,
i.e., application of quantum mechanics to establish a hin-
drance potential and subsequent calculation of the energy
levels for each rotation. Katzer and Sax [28] developed a
method in which internal rotations are automatically identi-
fied from the geometry and Hessian, and the internal rota-
tion partition functions are calculated using model potentials
whose parameters are also informed by the calculation of the
Hessian. This approach offers an economical and accurate
route to approximating the contributions of internal rotation
to the calculated partition functions and thermodynamic
properties. Vansteenkiste et al. [32] have presented a new
method, the extended hindered rotor model, that relies on
separation of large amplitude motions from harmonic vibra-
tions and also offers direct calculation of associated partition
functions.

3.3 Probing 1-D uncoupled rotation

The remainder of this manuscript focuses on investigating
aspects of the 1-DHR treatment which have not yet been
examined quantitatively in the literature using representa-
tive calculations. Specifically, we have addressed what effect
the type of optimization has when treating internal rotations
of transition states. We have also explored the sensitivity of
calculated properties of the hindered rotor to the choice of
computational method/basis set used in establishing the hin-
drance potential. Finally, we have quantified the impact of the
assumption that the reduced moment of inertia is invariant
while rotating.

To probe these questions, we investigated two different
systems. The first was the radical addition reaction

CH3C · HCl + C2H3Cl → CH3CHClCH2C · HCl
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that is one of the first steps in poly(vinychloride) (PVC)
polymerization. The complex hindrance potentials of the
product, CH3CHClCH2C ·HCl, provide a nice opportunity to
study the sensitivity of the calculated partition functions and
thermodynamic properties to the step size used to calculate
the potentials. The second reaction was the intramolecular
hydrogen transfer reaction

(CH3)2CHO2· → HO · + CH3COCH3

that is a prototype reaction of an important reaction family in
atmospheric chemistry. Note that the intramolecular product
CH3C · OOHCH3 is not observed, but rather the subsequent
β-scission products are formed directly [70]. The insights
derived from studying the transition states of these reactions
are applicable to a wide range of related systems.

4 Computational and theoretical details

All MO and DFT calculations were completed using the
Gaussian 03 [2] software package. The torsional hindrance
potentials were calculated within Gaussian 03, and the parti-
tion functions and thermodynamic properties were calculated
according to the method described in Sect. 2.1 which has been
coded in the “Calctherm” and “Calck” software packages
[51,52]. Calctherm and Calck provide partition functions,
thermodynamic properties and TST rate constants that are
fully corrected for internal rotation by first reading in struc-
tural and vibrational data from electronic structure software
and then correcting internal rotations that have been identi-
fied by the user. The hindered rotor correction is performed
by using the FGH method [61] to solve Eq. 1, and the energy
levels for each internal rotation are used to calculate the par-
tition function (Eq. 2) and associated thermodynamic pro-
perties (Eqs. 11 through 13). For all internal rotations and
temperatures considered, kT was less than or approxima-
tely equal to the barrier height, V ; thus the hindered rotor
scheme was used for all corrections. Each internal rotation
is processed to additively correct an entire species by (1)
including the contribution to q, S, Cv , and E of each IR and
(2) removing the corresponding contribution (within the HO
approximation) for each low-frequency vibration matched to
a hindered rotor. Calctherm is used to treat individual spe-
cies, and Calck can be used to calculate rate coefficients, acti-
vation energies and pre-exponential factors using transition
state theory. Molecular geometries were optimized using the
B3LYP hybrid density functional [71] and the CBSB7 basis
set that is represented as an extension of the Pople formalism
as 6-311G(2d,d,p) and adds an additional 2d polarization
function to third row atoms [72]. This is the basis set used in
the hybrid model chemistry CBS-QB3 [72] which has been
applied to study many problems of practical interest. Fre-
quencies used in computing thermodynamic properties were

scaled as recommended by Scott and Radom [73,72], i.e.,
0.9806 for ZPE, 1.0015 for Svib, and 0.9989 for Hvib and Cv .
Additionally, for the study comparing methods and basis set
we used MP2 and HF levels of theory with two additional
basis sets, 3-21G and 6-31G(d).

5 Results and discussion

The optimized structures of the transition state and product
from the PVC addition reaction and the transition state from
the intramolecular hydrogen transfer reaction are shown in
ball-and-stick format in Fig. 3. These are the structures that
will be referred to in the sections below.

5.1 Calculation of the hindrance potential in transition
states

Recently, we studied the intramolecular hydrogen transfer of
a large number of alkylperoxy radicals [49]. These reactions
proceed through a cyclic transition state before isomerizing
to form a peroxy radical or peroxide moiety. As an approxi-
mation to aid in the calculation of hindrance potentials in the
transition state, we simply chose to freeze all of the atoms
which constituted the ring structure of the transition state.
After freezing the coordinates in the ring, constrained geome-
try optimizations were performed to obtain the 1-D hindrance
potentials for the remaining internal rotations. Rigorously, it
is correct to calculate the partition function for the transition
state, Q‡(T ), by identifying the saddle point at each point
along the scan to obtain the hindrance potential. However, the
additional computational demands imposed by this approach
are significant, and we introduced this approximation to save
computational cost. It would be reassuring to know that the
simpler approach provides acceptable approximations to the
more rigorous hindrance potentials.

To investigate the impact of the “frozen TS” assumption,
we first located the transition state for both the radical addi-
tion and hydrogen transfer reactions. We then calculated the
hindrance potential for the internal rotation(s) in each tran-
sition state using both methods: (1) re-optimizing the saddle
point at each step, or (2) freezing the positions of the atoms
defining the transition state to those occupied at θ = 0. In
the case of the radical addition reaction, the 4–3 bond length
was frozen (structure “B”, Fig. 3); for the intramolecular
hydrogen transfer reaction, the bond lengths, bond angles
and dihedral angles involving atoms 1, 2, 3, and 4 were fro-
zen (structure “A”, Fig. 3). For the sake of the comparisons
done here, we treated motion about the TS bond in the radical
addition reaction as an internal rotation as done by Izgorodina
and Coote [54] and calculated a hindrance potential using the
TS bond as the axis of rotation. For structure “A” in Fig. 3,
we examined the 1–5 bond as the axis of rotation.
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Fig. 3 Ball-and-stick diagrams of three compounds under consider-
ation. Structure A is the transition state of a 1,3-hydrogen shift of 2-pro-
pyl peroxy radical. Structure B is the transition state for the first radical
addition reaction in PVC polymerization. Structure C is the optimized
product from the addition reaction of PVC. Carbon atoms are shown in
grey; hydrogen atoms are shown in black; oxygen atoms are shown in
white; and Cl atoms are shown in dark grey

The results given in Fig. 4 show the hindrance potentials
for the rotation about the 4–3 bond of the TS of the radi-
cal addition reaction (Fig. 4a; structure “B” in Fig. 3) and
the rotation about the 1–5 bond of structure “A” in Fig. 3
(Fig. 4b) for the two different approaches. Remarkably,
the hindrance potentials for the two methods are nearly
indistinguishable, even for the much more complicated back-
bone rotation of the TS of the addition reaction. When Eq. 1 is
solved with two identical potentials, the energy levels, parti-
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Fig. 4 Comparison of hindrance potential calculated for internal rota-
tion in transition states calculated using two different approaches. Data
calculated freezing the coordinates of the atoms defining the TS center
are given with open circles and a black dashed line. Data calculated by
re-optimizing the TS at each point throughout the rotation are shown as
open diamonds and a dotted line. Each hindrance potential is calculated
using 30◦ increments. a shows the results for rotating around the 4–3
bond in structure “B” of Fig. 3. b presents results for rotation around
the 1–5 bond in structure “A” in Fig. 3

tion functions and associated thermodynamic properties will
also be identical. Although a limited sample was examined
here, the results are encouraging that continued refinement
of the atoms defining the transition state as θ is varied is not
necessary. This offers a significant savings in computational
time; the computational cost for establishing the hindrance
potentials (using 30◦ increments) when the atoms defining
the TS are frozen was roughly one-eighth that compared to
re-optimization of the saddle point at each step for the two

123



Theor Chem Account (2007) 118:881–898 891

cases examined here. For kinetic studies of large systems with
many internal rotations or studies which involve many reac-
tions, the advantage of the more simplified approach is clear.
We note that if this approach is applied to transition states in
which the transition state itself becomes an axis of rotation
and there are also three atoms in the transition state moiety,
e.g., intermolecular hydrogen transfer, it is not possible to
simultaneously constrain (freeze) more than two out of four
atoms that define a dihedral angle and subsequently scan that
dihedral angle to obtain the hindrance potential. An alternate
approach is suggested by Fernandez-Ramos et al. [67] in
which the rate coefficients calculated at different torsional
minima in the TS are summed.

5.2 Relating the choice of method and basis set
to calculated properties of hindered rotors

An important question regarding use of the 1-DHR scheme
is the choice of quantum method and basis set [9,69]. To
probe the effect of this choice we examined the “4–3” back-
bone and “4–5” methyl group rotations of structure “C” in
Fig. 3. To compare a variety of methods, we used HF, MP2,
and B3LYP with three different basis sets 3-21G, 6-31G(d),
and 6-311G(2d,d,p) (CBSB7). The hindrance potential was
obtained by first optimizing each structure at the respective
method/basis set combination and then scanning the rotation
using 30◦ increments. It is interesting to compare the different
hindrance potentials obtained to see their respective shapes
and barrier heights as well as the impact these potentials
have on the calculated properties. The calculated potentials
are given in Fig. 5. The methyl group rotation is well beha-
ved, and there is not much variability among methods and
basis sets. However, some variability is seen for the “4–5”
backbone rotation. For the medium and large basis sets, the
barrier heights for all methods are in reasonable agreement.
On the other hand, for all methods investigated, the 3-21G
potentials for the backbone rotation (filled squares in panel
A of Fig. 5) are qualitatively different from those obtained
using 6-31G(d) or the CBSB7 basis sets. For the case of the
HF/3-21G potential we note that periodic behavior was not
obtained in the calculated potential unless we defined the
“4–5” dihedral angle using H–C–C–H atoms.

The potentials shown in Fig. 5 for the nine different
methods and basis set combinations were then used to calcu-
late the hindered rotor partition function and hindered rotor
entropy at 200 and 1,000 K. These data are given in Table 1.
While the quantities obtained for each method (HF, MP2, or
B3LYP) differ slightly in absolute magnitude, it is clear that
the hindered rotor entropy is less sensitive to the size of the
basis set than the partition function. These data give limited
yet useful insight into the relative sensitivity of the calculated
partition functions and entropy to method and basis set.

0 60 120 180 240 300 360

θ (degrees)

0

2

4

6

8

E
ne

rg
y 

re
la

tiv
e 

to
 0

 d
eg

 (
kc

al
/m

ol
)

(a)

0 60 120 180 240 300 360

θ (degrees)

0

2

4

6

8

E
ne

rg
y 

re
la

tiv
e 

to
 0

 d
eg

 (
kc

al
/m

ol
)

(b)

0 60 120 180 240 300 360

θ (degrees)

0

2

4

6

8

E
ne

rg
y 

re
la

tiv
e 

to
 0

 d
eg

 (
kc

al
/m

ol
)

(c)

Fig. 5 Comparison of the hindrance potential calculated for the “4–3”
(closed symbols) and “4–5” (open symbols) rotations in structure “C”
of Fig. 3 using different methods and basis sets. The methods used were
HF (panel a), MP2 (panel b), and B3LYP (panel c). The basis sets used
were 3-21G (squares, solid lines), 6-31G(d) (triangles, dotted lines),
and 6-311G(2d,d,p) (circles, dashed lines). To guide the eye, the fits for
each data set in the “4–3” rotation are shown and only the data for the
fit of the small basis set are shown for the “4–5”
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Table 1 Calculated thermochemistry data for the potentials shown in
Fig. 5

3-21G 6-31G(d) 6-311G(2d,d,p)

T (K) qhr S qhr S qhr S

HF 200 3.02 3.34 1.60 3.27 1.62 3.32

1,000 17.01 8.27 15.58 8.38 15.87 8.40

MP2 200 1.75 3.60 1.76 3.70 1.82 3.70

1,000 16.54 8.39 17.51 8.47 18.15 8.53

B3LYP 200 2.20 4.17 2.09 4.16 2.26 4.32

1,000 18.77 8.46 19.84 8.58 20.89 8.63

The data given in the table are the hindered rotor partition function and
entropy (cal/mol K)

5.3 Selection of appropriate step size while traversing
hindrance potentials

Researchers who use the 1-DHR correction typically choose
a step size between 10◦ and 30◦ in order to traverse the
hindrance potential and establish V (θ). Obviously, this can
vary the computational cost of a given study greatly given
that these increments correspond to 37 and 13, respectively,
constrained geometry optimizations in order to traverse one
360◦ rotation and ensure that the energies at the starting and
ending points, i.e., 0◦ and 360◦, are identical. To the best of
our knowledge, there are no reported studies which probe the
sensitivity of the calculated properties to this choice.

To study the effect of the fineness of the hindrance poten-
tial scan, we investigated the rotations of both the backbone
(atoms 4 and 3 as the rotation axis) and the CHCl group
(atoms 2 and 3 as the rotation axis) in the product of the radi-
cal addition reaction shown as structure “C” in Fig. 3. The
“4–5” rotation is very well behaved so no comparison using
different step sizes is provided. Using B3LYP/CBSB7, step
sizes of 1◦, 15◦, 30◦, and 40◦ were used for each rotation,
and the data were fit to a full Fourier series using 10, 10,
10, or 8 coefficients, respectively. The Fourier coefficients
are given in Table 1 of the Supplementary Information for
reference, and the calculated data and best fits are plotted
in Fig. 6. The plot in Fig. 6a shows that for the more com-
plicated backbone rotation (bond “4–3”), all of the data are
essentially in perfect agreement. It is a bit surprising that the
40◦ scan which uses only eight terms in the Fourier series
is able to perfectly capture the data from the much more
computationally expensive 1◦ scan. It is also interesting that
even though the scan in increments of 40◦ has points which
are substantially further (as compared to the 1◦, 15◦ and 30◦
scans) from the three peaks in energy, the fitted terms can
still capture the data as well as the finer scans. This good
agreement is very encouraging given the complexity involved
with this and other backbone rotations. The “2–3” rotation
of the CHCl group is less regular than the backbone rotation
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Fig. 6 Comparison of hindrance potential (kcal/mol) and correspond-
ing Fourier series fits calculated for the “4–3” (a) and “2–3” (b) rotations
in structure “C” of Fig. 3. The potentials were calculated by travers-
ing a step size of 1◦ (heavy solid line), 15◦ (circles/solid line), 30◦
(diamonds/dashed line), and 40◦ (squares/dotted line). For the 1◦ step
size, the actual data from electronic structure calculations are shown
as a single line. The coefficients for the Fourier series are given in the
Supplementary Information

as shown in Fig. 6b. However, all four scans are in very good
agreement. We found that it in order to obtain meaningful
results, it was necessary to define the dihedral angle using
the C–C–C–Cl atoms. If other combinations of atoms were
used, a sharp peak was observed when the C and Cl (atoms
4 and 1) were perfectly eclipsed.

It was therefore interesting to calculate what impact
these discrepancies had on thermodynamic properties. We
calculated the entropy, heat capacity and the thermal
contribution to the internal energy for these two rotations
(“2–3” and “4–3”) using the energy levels obtained from
solution of Eq. 1. The calculated entropy, heat capacity, and
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Table 2 Calculated thermochemistry data for the potentials shown in Fig. 6

T (K) 1◦ scan 15◦ scan 30◦ scan 40◦ scan Harmonic oscillator

S Cv E S Cv E S Cv E S Cv E S Cv E

Rotation about the “4–3” backbone C–C bond. ν = 84.4 cm−1

200 4.74 0.53 2.78 4.74 0.53 2.78 4.74 0.54 2.80 4.72 0.54 2.84 2.92 6.83 0.41

400 6.74 1.11 2.92 6.74 1.11 2.92 6.74 1.12 2.92 6.74 1.12 2.94 4.27 3.71 0.80

600 7.87 1.67 2.63 7.87 1.67 2.63 7.88 1.67 2.63 7.88 1.68 2.63 5.07 3.02 1.19

800 8.58 2.16 2.28 8.58 2.16 2.28 8.58 2.16 2.27 8.59 2.17 2.27 5.64 2.72 1.59

1,000 9.06 2.59 1.99 9.06 2.59 1.99 9.06 2.59 1.98 9.06 2.59 1.98 6.09 2.56 1.99

Rotation about the “2–3” C–C bond. ν = 48.6 cm−1

200 5.04 0.57 2.50 5.06 0.57 2.49 5.03 0.56 2.52 5.04 0.57 2.51 4.16 3.85 0.40

400 6.59 1.01 2.01 6.60 1.01 2.00 6.59 1.01 2.03 6.60 1.01 2.03 5.53 2.77 0.80

600 7.36 1.38 1.77 7.36 1.38 1.76 7.36 1.39 1.77 7.37 1.39 1.77 6.33 2.48 1.19

800 7.84 1.72 1.58 7.84 1.72 1.57 7.85 1.72 1.58 7.85 1.72 1.57 6.91 2.35 1.59

1,000 8.18 2.02 1.44 8.18 2.02 1.44 8.18 2.02 1.44 8.18 2.02 1.43 7.35 2.27 1.99

The data given in the table are the entropy (cal/mol K), heat capacity (cal/mol K) and internal energy (kcal/mol)a. Both rotations were calculated to
be hindered rotors over the temperature range considered. The values based on the harmonic oscillator approximationb (including ZPE) are given
for referencec. The frequency assigned to each internal rotation is given in the table
a The thermal contribution to the internal energy is calculated as E = RT 2

(
∂ln q
∂T

)

V
. The total internal energy is not reported since it includes

the electronic energy which is very large compared to the values reported here. The energy levels for the hindered rotor include the ZPE, i.e., the
ground-state energy is not 0; therefore the HO values include the ZPE, 1

2 hν, for fair comparison
b Following the recommendation of Scott and Radom [73], the frequencies were scaled by 1.0015 (calculation of entropy), 0.9989 (calculation of
EHO

vib ), 0.9806 (ZPE), and 0.9989 (Cv)
c There are three low-frequency vibrations which could potentially be assigned to the two rotations (“4–3” and “2–3”). Normal mode analysis
reveals the contributions of these backbone rotations to each of the frequencies as: 48.6 cm−1 [“2–3” : 54.7%, “4–3” : 35.3%], 88.2 cm−1 [“2–3”
: 35.3%, “4–3” : 52.7%], 190.4 cm−1 [“2–3” : 63.1%, “4–3” : 11%]. For illustration purposes, we chose the two lowest frequencies to assign as
hindered rotors, although the mixing of vibrational modes is known to present difficulties [30]

internal thermal energy for the temperature range 200 to
1,000 K are given in Table 2. As expected all of the data
agree well for both internal rotations given the similarities in
the hindrance potentials that were fit. The data for the 40◦
scans of both rotations agree surprisingly well with the 1◦
data, demonstrating that any minor deviations between the
fit hindrance potentials as shown in Fig. 6 do not affect the
calculated thermodynamic properties substantially. In gene-
ralizing these results to complex molecules with many inter-
nal rotations, it should be remembered that small deviations
for each internal rotation may result in significant deviations
for the property of a species as a whole since the contribu-
tions are additive. Finally, the data in Table 2 also include the
corresponding harmonic oscillator data if one were to simply
use the HO approximation for all calculations. The compa-
rison between all four step sizes and the HO data clearly
shows strong deviation between the HO approximation and
the 1-DHR correction.

Calculations such as the type illustrated in Fig. 6 and
Table 2 are helpful because they offer a rational template for
deciding how much computational resource to expend while
exploring the hindrance potential and performing the 1-DHR
correction. Especially given the complex, asymmetric rota-
tion potentials produced by the bulky chlorine atoms, these

results should give insight for a wide range of systems. To our
knowledge, these results are the first systematic, quantitative
comparison of using different step sizes for the constrained
geometry optimization.

5.4 Investigation of the reduced moment of inertia
as a function of the rotation angle

In spite of the importance of the reduced moment of inertia
in calculating the 1-DHR correction, there are no reported
studies quantifying Ired as a function of θ for bulky, asym-
metric groups, although East and Radom [9] probed the sen-
sitivity of calculated entropy values to changes in Ired within
the Pitzer-Gwinn formalism. One potential solution is to
calculate the reduced moment of inertia for a top using the
formulae in Sect. 2.1.2 as a function of θ , fit the data to a
functional form, and then use that function in solving the
energy levels for the rotating top [56]. Further work must be
done, however, to assess (1) the degree to which Ired changes
as an asymmetric top rotates and (2) the degree to which
these changes impact the partition function and calculated
thermodynamic properties.

One final consideration in examining the accuracy of the
1-DHR calculation is the degree to which the reduced moment
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of inertia changes as a function of the dihedral angle that spe-
cifies a given internal rotation. The relaxation of the structure
subject to (1) the constraint of the fixed dihedral angle and
possibly (2) the constraint to freeze the atoms defining the
transition state could result in changes in Ired as a function
of rotation. To investigate this, each dihedral angle (bonds
“2–3”, “4–3” and “4–5”) in the product of the PVC addition
reaction, structure “C” in Fig. 3, was scanned in 30◦ incre-
ments. Each scan has 13 steps, thereby giving 13 distinct
optimized geometries, and the reduced moment of inertia for
each particular rotation bond was calculated for each of the
13 structures, affording Ired as a function of the angle of rota-
tion. We calculated all three of the different I 2,n presented
in Sect. 2.1.2, and these data are summarized graphically in
Fig. 7.

The rotation involving the methyl group, as expected, has
a nearly constant reduced moment of inertia as a function of
rotation angle. In addition, the three I 2,n all give roughly the
same value for the rotation of the methyl group. The values of
I 2,n for the backbone (“4–3”’ bond) and CHCl (“2–3” bond)
rotations are very different and follow the expected trend,
i.e., I 2,1 > I 2,2 > I 2,3. To help understand the large diffe-
rences between the various I 2,n shown in Fig. 7, it is helpful
to remember that the reduced moment of inertia combines the
moments for each of the “tops” and that each top contains a
single heavy chlorine atom. It is therefore not surprising that
such large and disparate Ired values are obtained given their
strong dependence on the square of the Cl-axis of rotation
distance. It is interesting to observe that for the approxima-
tions n = 1 and n = 2 (panel a and panel b, respectively) in
Fig. 7, the reduced moments of inertia are essentially constant
as the dihedral angle is scanned. We hypothesize that this is
because the axis of rotation is either fixed (n = 1) or can move
but stays parallel to the single bond connecting the rotating
groups (n = 2). For the third approximation of rotor-rotor
coupling (n = 3), the axis of rotation is only defined by
the two centers of mass and can vary greatly as the dihe-
dral angle is scanned. Therefore, the distance between the Cl
atoms and the axis of rotation can change much more and
make a stronger impact on the effective moment of inertia.
Examining panel c in Fig. 7 shows that dramatic changes
are seen in the reduced moment of inertia as a function of
angle for the backbone rotation (“4–3” bond) and the rota-
tion of the CHCl group (“2–3” bond). The stationary points
have reduced moments of inertia of 31.1 amu Å2 (“4–3”) and
14.1 amu Å2 (“2–3”), but the range of values for the two
rotations is 22–39 amu Å2 (“4–3”) and 4–21 amu Å2

(“2–3”) as the angle is changed from 0◦ to 360◦.
The rotation about the “2–3” bond was used to probe the

sensitivity of changes in Ired to calculated properties because
it is one of the rotations that has the largest changes in the
reduced moment of inertia as a function of θ . As a first
approximation, we solved Eq. 1 by using the same rotational
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Fig. 7 Comparison of the reduced moment of inertia as a function of
rotation angle for each of three different rotating tops in structure “C”
in Fig. 3 calculated according to the prescription in Sect. 2.1.2. The
data are calculated using three different approximations of rotor-rotor
coupling: I 2,1 (panel a), I 2,2 (panel b), and I 2,3 (panel c). The data in
the figure show the reduced moment of inertia calculated in 30◦ incre-
ments. The “4–5” (methyl group) rotation is denoted by open circles,
the “4–3” (backbone) rotation is shown with squares, and the “2–3”
(CHCl) group is denoted by open diamonds. A cubic spline (dashed
line) is drawn for each data set for reference
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potential and systematically changed its value between 4 and
21 amu Å2 in order to explore the sensitivity of the partition
function and thermodynamic properties to the value of Ired.
The calculated partition function and entropy at 298.15 K are
given in Table 3. Within the 1-DHR approximation, the large
relative changes in the reduced moment of inertia can have a
meaningful impact on the calculated thermodynamic proper-
ties. The partition function is seen to change from approxi-
mately −47 to +22% of its value at the equilibrium structure
and the entropy changes are less drastic varying from −20 to
+6% of their equilibrium values. Additionally, we found that
the calculated changes in qhr and S vary only a small amount
as a function of temperature.

It is interesting to compare these calculated results to the
results of East and Radom [9] who also studied the sensitivity
of the calculated entropy to changes in the reduced moment of
inertia. Within the Pitzer and Gwinn formalism, they varied
the height of the rotational potential for a top with symmetry
number (σr) of three between 0.96 and 2.63 kcal/mol, and the
reduced moment of inertia was changed between 0.65 and
3.0 amu Å2. Their results show the calculated entropy to be
strongly dependent on both terms. This is consistent with the
results given in Table 3 since the hindered rotor entropy was
observed to be dependent on the reduced moment of inertia
for the PVC radical product. For example, the data from East
and Radom show that an increase by a factor of 4.6 in Ired

corresponds to an increase of 1.5 cal/mol K in the hindered
rotor entropy, and an increase of a factor of 5 (changing from
4 to 20) in Ired from the data in Table 3 corresponds to an
increase of 1.6 cal/mol K in the hindered rotor entropy. To
explore this further, we compared the results of East and
Radom in terms of S versus Ired as a function of V/RT , where
V is the barrier to rotation, with results from our method
for V/RT of 1.6, 4.4, and 10. The values V/RT = 1.6 and
4.4 correspond to those chosen by East and Radom in their
study, and the value of V/RT = 10 was chosen because it
represents a barrier height of 6 kcal/mol at 298.15 K which
is the barrier height of the “4–3” rotation in the product of

Table 3 Calculated partition function and entropy (cal/mol K) for the
rotation “2-3” of structure “C” in Fig. 3

Ired qhr S

4 3.39 4.94

10 5.38 5.85

14.1a 6.39 6.19

20 7.61 6.53

21 7.80 6.58

The reduced moment of inertia (amu Å2) is given for reference and
adjusted to cover the full range seen in this rotation, as shown in Fig.
7c. The data are calculated at 298.15 K
a The reduced moment of inertia calculated at the minimum energy
structure

the PVC addition reaction (see Fig. 6a). The calculated data
are summarized graphically in Fig. 8 using a logarithmic axis
for Ired since the entropy is dependent on the logarithm of
the reduced moment of inertia.

The data presented here show that the main considera-
tion in studying the effect of changes in Ired as a function of
the rotation angle is the relative difference and not the abso-
lute difference. For example, the data in Table 3 shows that
changing Ired from 14.1 to 20 amu Å2 changes the entropy by
only 0.39 cal/mol K where as a comparable absolute change
in the regime explored by East and Radom (changing Ired

from 0.65 to 5.65 amu Å2) causes a change in the entropy of
2.07 cal/mol K. Although these results are given for symme-
tric tops, the conclusions are general for tops of any symmetry
number. Manipulation of Eq. 11 shows that for tops with a
symmetry number greater than one the hindered rotor entropy
is uniformly decreased by the quantity k ln σri . Thus, the trend
of the curves shown in Fig. 8 is invariant with the internal
symmetry number of the top. These results are important in
the development of heuristics for using the 1-DHR model. If
the relative changes in Ired as a function of the rotation angle
are not large, then accurate properties are still obtained using
the 1-DHR model.
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Fig. 8 Comparison of the hindered rotor entropy with changes in the
reduced moment of inertia for several different potentials of varying
V/RT . The data are calculated at 298.15 K and all potentials represent
a top with a rotational symmetry number (σr) of three. The symbols
are taken from East and Radom [9] and the data in lines are calculated
using the approach given in this paper and the Calctherm software. The
potentials considered V/RT = 1.6 (open circles, solid line), 4.4 (open
diamonds, dotted line), and 10 (dashed line)
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6 Summary and future outlook

We have given an overview of how the 1-DHR scheme can be
used to treat internal rotation. Additionally, we have sought to
put the 1-DHR scheme in context by providing a brief sum-
mary of the current practice in quantum-mechanical treat-
ment of internal rotation. The uncoupled, 1-D hindered rotor
model has been widely applied to study numerous problems
of chemical and engineering interest. We expect the 1-DHR
model to continue to be a general part of the modeling tool-
kit for ab initio studies since there are few alternatives to the
1-DHR model that are both computationally tractable and
general for tops of any symmetry. In response to the lack
of general electronic structure codes that make the 1-DHR
model part of the standard menu of choices, we have offered
two codes, “Calctherm” and “Calck”, that extract data from
electronic structure software output, perform the 1-DHR
correction, and finally output thermodynamic and kinetic
properties which have been fully corrected for internal
rotation.

Several calculations were performed to test the applicabi-
lity of the 1-DHR model to a wide range of systems and
revealed how the 1-DHR model may be more efficiently
applied in general. We have shown that rotational hindrance
potentials in the transition state can be determined by sim-
ply freezing the atoms defining the transition state instead of
re-optimizing to a transition state at each point throughout
the rotation. Additionally, we have explored the sensitivity
of calculated properties to the choice of step size (in scan-
ning each rotational top) and the method and basis set. These
results can help modelers make rational choices and realize
significant savings in computational cost when applying the
1-DHR model. Finally, we used highly asymmetric rotating
tops to quantify how much the reduced moment of inertia
changes as it undergoes rotation. The sensitivity of calcula-
ted properties to the changes in the reduced moment of inertia
was calculated, and we showed that in general changes in the
reduced moment of inertia do not compromise the accuracy
of the 1-DHR model.
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